Crossword Compilation with Horn Clauses

H. BERGHEL

Department of Computer Science, University of Arkansas, Fayetteville, AR 72701, USA

Because of the widespread interest in crossword puzzles, serious attention has been given in recent years toward the
development of efficient algorithms for their generation and solution. In this paper we describe a new approach which is
based upon an analysis of the problem expressed in first-order predicate logic. This analysis is then used to construct a
crossword compiler in Prolog. The kernel of the program is then presented and described.

Received November 1985

1. INTRODUCTION

A crossword puzzle is a word game defined upon an
m X n matrix where most, if not all, of the cells are filled
in with characters which comprise words along horizontal
and/or vertical axes. The puzzle solver uses ‘clues’
provided with the puzzle to narrow the range of
acceptable characters and words. In finding a solution,
the player seeks to associate with each clue a related word
or phrase with desirable orthographical properties.

Such puzzles may be described in terms of at least three
characteristics: geometry, density and degree of
interlocking. The geometry of a crossword puzzle is
defined by the size of the matrix and the distribution of
closed and open cells. Closed cells, which usually appear
as solid boxes, are not actually parts of the puzzle, but
are used to mark internal word boundaries. Open cells,
on the other hand, are the business part of the puzzle.
They are filled in with characters which make up the
words. In Romance languages, these works are formed
by the concatenating horizontally or vertically contiguous
characters, reading from top to bottom or left to right.
We refer to these contiguous cells as word slots.

Although each cell has an implicit address associated
with it (row and column indices), by custom only those
open cells which begin words are numbered in the puzzle.
The termination of the word slot may be indicated by
a closed cell, the border of the puzzle or a numbered cell
which signifies the start of a new word on the same line
or column.

The density of a puzzle refers to the percentage of open
cells. In the extreme case where there are no closed cells,
the puzzle will be described as full.

The last parameter by which we may compare
crossword puzzles is the degree of interlocking of words.
We say that two word slots are interlocked when they
share at least one open cell. Typically, interlocking is
orthogonal. In this case, a horizontal word slot intersects
a vertical word slot. We will refer to the open cell at which
this intersection occurs as the orthogonal intercept.

The percentage of open cells which are shared provides
the degree of interlocking. If all open cells of a crossword
puzzle are shared, the puzzle will be said to be completely
interlocked. Generally speaking, modern crossword
puzzles exhibit a high degree of interlocking, and most of
the American puzzles that we have seen are completely
interlocked. The reader should note the nomenclature
used in this section is slightly different from that
employed in Smith and Steen.® For an alternative
treatment, see Mazlack.®

Fig. 1 is an illustration of a typical American
crossword puzzle.

Sl 52

65 66 67

Figure 1. Puzzle defined on 15Xx15 matrix. Degree of
interlocking: complete; density: 849,

2. CROSSWORD COMPILATION

‘Crossword compilation’ is the phrase used by Smith and
Steen® to refer to the stages in the creation of crossword
puzzles. In the terminology of the previous section,
crossword compilation can be seen to involve the
following operations:

(1) creation of the host matrix,

(2) determination of the overall design (i.e. pattern of
open and closed cells) within the matrix,

(3) specification of word slots,

(4) identification of shared cells,

(5) construction of one or more solution sets, and

(6) composition of a clue set for each solution set.

The solution of the crossword puzzle amounts to
performing the sequence (5)—<(6) in reverse order.

For present purposes we will concentrate upon stage
(5). In particular, we intend to describe a simple
procedure which will derive all solution sets from a
crossword puzzle with a certain geometry.

THE COMPUTER JOURNAL, VOL. 30, NO. 2, 1987 183

0702 ‘LT 1aquialdas uo s[ealpolad Areiqi ye 610°sjeuinolplopxojulod woly papeojumoq

http://comjnl.oxfordjournals.org/

H. BERGHEL

3. ALOGICAL APPROACH TO FINDING
SOLUTION SETS

Assume that we have a crossword puzzle which employs
only orthogonal interlocking. Suppose that we have two
word slots, of length m and n (m,n > 1), respectively.
Further suppose that the orthogonal intercept is cell i
(1 < i< m)in the first word slot and j (1 <j < n) in the
second. In attempting to solve or create this part of the
puzzle, we in effect make the following claim: there exist
two words in our dictionary which share the same
character in positions i and j, respectively. Formally, we
say

AXy, . X X)) 3Yy, L Y, L Y)
(word(Xy, ..., X;....,X,,)
&wordYy,.... Y, ..., Y,)&X; = Y)

D A
where X;/Y; is the orthogonal intercept, the predicate,
‘word’, is interpreted as ‘the result of concatenating the
following argument names is a word’, and the domain of
discourse is essentially the set of characters of the Roman
alphabet. Further, we note that the identity operator is
actually unneeded, for we can say the same thing by using
a common variable in both arguments. This is,

GXy, ... X)) @Yy, .., Y,) QZ) (word(X,, ..., Z, ..., X,,)

&word(Yl, ceny Z, ooy Yn)7

which is related to the earlier expression by bound
substitution. Since the two occurrences of the shared
variable are bound by the same quantifer, any
substitution instance which holds true for the first
predicative expression is guaranteed to hold true for the
second as well.

We now generalise this description for the entire
puzzle. Assume that there are m ‘across’ words and n
‘down’ words. We may associate each word slot with a
word by means of a naming predicate, ‘name’, such that
an expression of the form

name(slot_k,[X,, X,, ..., X;])

will be interpreted as ‘the string of open cells,
X, X, ..., X;, will be called slot_k’, for 1 <k < m+n.
For each of the j (1 <j <i) word slots which intersect
slot_k, we will substitute a new existentially quantified
variable, Z; at the orthogonal intercept. If we continue
this process for all intersecting word slots, we will have
converted the two-dimensional puzzle into a linear list of
predicative expressions. (In fact, all of these expressions
are Horn clauses, hence the title of this article.)

At this point we wish to employ a derivation technique
to determine whether the entire set of expressions can be
jointly satisfied with respect to some dictionary.

4. THE PROLOG PROGRAM

We suggest that the foregoing is a literal description of
our intention in stage (5) of crossword compilation. Any
inference technique which can jointly satisfy the
predicates defined above can, inter alia, provide a
solution to the puzzle. Further, each set of substitution
instances for the variables will provide another solution
to the puzzle.

Fortunately, the descriptive language, Prolog,? 3 is
available for these sorts of problems. Prolog has a built-in
theorem prover which operates upon sets of Horn clauses

184 THE COMPUTER JOURNAL, VOL. 30, NO. 2, 1987

in a left-right, depth-first manner. In the program we
describe below, we shall determine whether a solution
exists to a crossword puzzle by determining whether the
expressions defined above are consistent with a set of
lexical axioms.

The lexical axioms will be predicative expressions
similar to those above, except that constants (characters)
will replace the variables in the argument, and there will
be no slot identifiers. That is, they will be statements of
the form ‘word(c,, c,, ..., c,)’, where each ¢, 1 <i<n,
is a character of the Roman alphabet, perhaps
augmented with delimiters (e.g. hyphens) and special
symbols (e.g. apostrophes). These axioms define our
lexicon; they explicitly state which character strings
constitute words. The lexicon which is currently in use
consists of 9734 words. The word distribution by length
is depicted graphically in Fig. 2.

The program proper (excluding 1/0) consists of one
procedure, or rule, called ‘solution’. The head of the
procedure has a list structure as its sole argument. Each
element of the list is a variable which stands for one of
the word slots. The body of the procedure consists of a
set of procedure pairs, again one for each word slot. This
body is the literal translation (in Prolog) of the list of
predicative expressions referred to in the previous
section. A brief example should make these remarks
clearer.

Consider the puzzle presented in Fig. 1. We observe
that this puzzle is represented on a 15 x 15 matrix which
is 849, dense. Further, it is completely interlocked,
orthogonally. Each of the word slots is terminated by
either a closed cell or the matrix border.

Let us now construct the clause set for the solution of
the upper left-hand corner of the puzzle. We observe that
this entails filling nine word slots (1, 2, 3, 4 down and 1,
14, 17, 20, 23 across). Further, the open cells of these
word slots are interlocked. Thus, the solution of this part
of the puzzle involves the following Prolog clause:

solution([SLOT _1d, SLOT _2d, SLOT 3d,SLOT_4d,
SLOT 1a,SLOT_14a,SLOT 17a, SLOT _20a,
SLOT_23a]):—
word(C_1,C2_1,C3_1,C4_1,C5_1),
name(SLOT_14,[C1_1,C2_1,C3_1,C4_1,C5_1)),
word(C1_2,C2_2,C3_2,C4_2,C5_2),
name(SLOT_24,[C1_2,C2_2,C3_2,C4_2,C5_2]),
word(C1_3,C2_3,C3_3,C4

— ,C —
C6_3,C7_3,C8_3,C9_3,C10_3),
name(SLOT 3d,[C1_3,C2_3,C3_3,C4_3,
C5_3,C6_3,C7_3,C8_3,C9_3, C10_3]),
word(C1_4, C2_4,C3_4),

3

name(SLOT_4d,[C1_4,C2_4, C3_4)),
word(C1_1,C1_2,C1_3,C1_4),

name(SLOT _1a,[C1_1,C1_2,C1_3,C1_4]),
word(C2_1,C2_2,C2_3,C2_4),

name(SLOT _14a.[C2_1,C2_2,C2_3, C2_4]),
word(C3_1,C3_2, C3_3,C3_4),

name(SLOT_17a.[C3_1,C3_2, C3_3, C3_4]),
word(C4_1,C4_2,C4_3),

name(SLOT_20a, [C4_1, C4_2, C4_3)),
word(C5_1,C5_2,C5_3,C5_4,C5_5,C5_6,C5.7),

name(SLOT_23a,[C5_1, C5_2, CS_3,C5_4, C5_5,

C5_6, C5_T)).

For convenience in exposition, we here identify each
cell variable by its row and column coordinates in the

0T0Z ‘2T Jaquaidas uo seaipouad Areiqiq 1e 610°speuinolploxorjulwod woly papeojumoqd

http://comjnl.oxfordjournals.org/

CROSSWORD COMPILATION WITH HORN CLAUSES

2500

2000

1500

Frequency

1000

500

1 2 3 4 5 6 7

Word length
Figure 2. Distribution of words by length.

matrix. Thus ‘C3_4’ is the variable which stands for the
cell in the third row and fourth column. We interpret this
‘SLOT_2d’,...,SLOT 23a’ will be found if some
substitution instance for the cell variables exists such that
each of the resulting strings is a word (i.e. matches with
some entry in the dictionary). It is important to recall
from Section 3 that each occurrence of a given variable,
no matter which goal it is in, is bound by the same
implicit quantifier. This guarantees that multiple occur-
rences of the same variable in the clause set will always
be instantiated to the same character for any given
solution. This is precisely the meaning of shared cells.

This representational schema is then re-applied for the
remaining word slots in the puzzle. The lexicon is a set
of clauses of the form ‘word(c,c,,...,c,)’ where the
characters c,, c,, ..., ¢, are treated as individual atoms in
the argument of the predicate. Aside from a few 1/0
predicates, some control procedures and the lexicon, the
above clause is the entire program. (Note that the
identification of a word slot is independent from the
recognition of a word in that position. We will return to
this point again in Sections 6 and 7.)

5. ILLUSTRATION OF THE METHOD

The program which we have developed is a literal
implementation of the procedure described above. For
convenience we have added a few simple, interactive

routines which help create the clause sets in order to limit
the amount of typing. In addition, we employ several
techniques for limiting the size of the search space (see
below). However, the backbone of the program remains
the clause discussed in the previous section. Given
enough time, and an adequate dictionary, a program
with this format will generate all solutions for any given
crossword puzzle.

To illustrate the effectiveness of the program, we began
by solving one of the crossword puzzles which appeared
in Smith and Steen (see Fig. 3). We terminated the
program after 87 hours of operation on an IBM/PC
using an interpreted Prolog. At the time of termination,
1286 solutions had been found, the last of which appears
as Fig. 4. Despite the fact that the program ran on a
microcomputer, the efficiency was on a par with the
Smith and Steen approach (on average, one solution
every 4.06 minutes). While we had intended to run the
program long enough to derive the Smith and Steen
solution, it quickly became evident that the solution set
was too large to make this goal viable. In fact, even when
all the across words were inserted into the program as
constants, there were 24 different solutions resulting
from variations on the down words alone, of which the
Smith and Steen solution was eighth. As an aside, the
latter solution set was found in 18.4 minutes.

As our next test, we solved completely interlocked, full
puzzles. These puzzles are especially interesting, for the

THE COMPUTER JOURNAL, VOL. 30, NO. 2, 1987 185

0TOZ ‘LT laquialdas uo s[ealpouad Areiqi 1e 610 sfeuinolpiojxo’juliod woly papeojumoq

http://comjnl.oxfordjournals.org/

H. BERGHEL

e d 3 B

i d

Al | B

- -~ e
PPl -

Ml d O B
-0 -

ol =1 = - - -

H--l--- =]

e o H
- - - =P

i

&
g
w
®
[
1)
%
(-9
—
-
=]
=]
w0
g

ith and Steen.)®

F - - - -l

-l B
Pl=F -~ - -1

FIl--E-- -]
o b = | e = o |= -

- - - - - - - -
H-N-N- -

daddaaay & o

- -

e |
W

- - -~

Figure 4. Solution 1286 (run time: 87 hours).

high degrees of interlocking and density increase the
search times considerably, while restricting the size of the
solution set. Once again, a microcomputer was employed
in the solution. In this case, due to the increase in search
time, we moved to an IBM/PC-AT and compiled our
code.

We solved puzzles defined on 2x2, 3x3 and 4x4
matrices. The sizes of the solution sets were 22, 1246 and
1824, respectively. The run times were, in order, 11
seconds, 35 minutes and 30 hours. The average time
required to find each solution was thus 0.5 seconds for
the 2 x 2, 1.7 seconds for the 3 x 3 and 1 minute for the
4 x 4. Sample solutions appear in Figs 5-7.

6. HEURISTICS

In Section 5 we alluded to control procedures which
increase the efficiency of our program. We niow discuss
them in greater detail for they illustrate another
advantage of the logical approach: the programmer has
considerable latitude when it comes to introducing
constraints which guide the search strategy. Further, the
programmer does not have to rely on ad hoc or unintuitive
procedures in order to exercise this control.

186 THE COMPUTER JOURNAL, VOL. 30, NO. 2, 1987

Figure 5. 2 x 2 full puzzle with complete interlocking. Solution 11
of 22,

Figure 6. 3x 3 full puzzle with complete interlocking. Solution
452 of 1246.

Figure 7. 4 x4 full puzzle with complete interlocking. Solution
906 of 1824.

It is easy to appreciate the importance of a viable
strategy in puzzle solution if one considers the potentially
enormous size of the search space. Suppose, for example
that one uses a simple, generate-and-test approach to
compile a full, n x n crossword with complete orthogonal
interlocking. If k is the size of the alphabet from which
the words are drawn, this strategy would create k"*
possible solutions, each one of which would require 2n
tests. If we restrict ourselves to the Roman alphabet, a
simple 4 x 4 puzzle would have 1022 possible solutions.

Two basic strategies have been proposed for reducing
the search space. Mazlack” refers to then as the ‘whole
word’ and ‘letter by letter’ methods. Under the whole-
word approach, each cell of a word slot is filled at
the same time, by means of lexical insertion. Under the
letter-by-letter approach the cells are filled individually,
without immediate reference to the work of which it is a
part. The advantage of the whole-word method is that
every inserted character and substring is guaranteed
to be a part of a word in at least one direction. The
disadvantage is that words in parallel word slots may
form illegitimate character combinations for subsequent
intersecting work slots. Conversely, the strength of the
letter-by-letter approach is that illegal letter combinations
in both directions can be largely avoided, but there is no
guarantee that any given cluster of characters will
eventually grow into complete, intersecting words. The
letter-by-letter technique was used by Mazlack,” while
the whole-word method can be found in Smith and
Steen.®

Our method is a hybrid of the two. It is ‘whole word’
in so far as insertions are concerned, for entire word slots
are filled at once. However, the word insertions are

0T0Z ‘2T lequiaidas uo spealpoliad Arelqi 1e Bio sjeuinolpiojxo’julwos wolj papeojumoq

http://comjnl.oxfordjournals.org/

CROSSWORD COMPILATION WITH HORN CLAUSES

constrained according to whether the substrings which
they impose on the intersecting word slots are legitimate.
This manner of constraint is in principle the same as that
used in letter-by-letter generation. A simple example
should illustrate this technique.

Suppose that we were to solve the upper, right-hand
part of the puzzle in Fig. 1. Note that it would be
unreasonable to insert ‘cozy’ below ‘lazy’ in word slots
10 and 16 across, respectively, for this would make
solutions for 10, 12 and 13 down impossible (no English
word begins with ‘Ic’, ‘zz’ or ‘yy’). We accomplish
this checking by means of an additional set of goals of
the form

word(X,, X,, , ...,),

where the underscore symbol is taken to be an
anonymous, or ‘don’t care’ variable. This predicative
expression will succeed only when there is at least one
word in the dictionary which has the characters currently
instantiated to the variables in the initial two character
positions. In practice, we will place such expressions
between the ‘word’ and ‘name’ goals, one for each
intersecting word slot.

The advantage of this type of constraint is that ‘naive
backtracking’ can be avoided. Backtracking is extremely
time-consuming in Prolog for it is inextricably linked to
the resolution/unification mechanism. Thus, if left to its
own devices, Prolog will backtrack to the point of last
success and try another alternative. However, this point
may be too far down in the search tree.

To illustrate, consider the partially solved puzzle in
Fig. 8. Assume that we have placed the goals in the
following order: 1 across, 1 down, 2 across, 2 down, etc.
When we fail for 3 down (‘ZLA_’), naive backtracking
would take us back to the point of last success (3 across)
and try again. Thus we would try in turn ‘SEES’,
‘SELL’, ‘SEND’, and so forth. However, the problem
arises farther up in the search tree: by inserting ‘ABLE’
below ‘LAZY’, one creates the illegal character
combination ‘ZL__’. We prevent naive backtracking by
ensuring that no word is inserted which imposes such
illegal combinations on the remainder of the puzzle.

The implications of naive backtracking on efficiency
are dramatic. By Smith and Steen’s estimate, if there are
k n-letter words in the dictionary, a word slot of length
n with m characters fixed will have approximately
(k'/n)n—m alternatives. In our case, where there are
approximately 1000 4-letter words in the dictionary, the
problem depicted in Fig. 8 will require roughly
((1000°-25)2)2 substitutions before the cause of the
problem is addressed and a new word is substituted for
2 across. It is easy to see how failure to include con-
straints like the one mentioned above can account for

Figure 8. Partially comple

g

4 x 4 puzzle.

a decrease in performance of several orders of magnitude,
a hypothesis confirmed by our own experience.

Our proposal also has implications for other areas of
heuristics. For example, the goals in the clause set are
portable, and can be arranged for additional efficiency.
intuitively, the shortest and longest word slots should be
filled in first because there are fewer words of that length
to choose from. This prioritization is accomplished by
simply shuffling the goals within the clause. The same
reasoning would apply to attempts to fill in the most
dense or most interlocked portions of the puzzles first.

Further, we may easily avoid the duplication of words
in any particular puzzle by collecting the chosen words
in a set, and then insisting that a word can only be a
candidate for insertion if it is in the dictionary but not
in that set.

Lastly, these procedures do not require that the
dictionary be laid out in any particular way. In our
dictionary, the length of a word is also the arity of the
corresponding lexical predicate. For this reason, the
search for a candidate for a given word slot will always
be restricted to words that do indeed fit, and are in fact
appropriate.

7. EXTENSIBILITY

The intuitiveness and simplicity of the method we
describe should be obvious from the discussion in
Sections 3 and 4. The logic of the problem is directly
addressed by the program. All tests are made with respect
to the lexical axioms. This means that no character string
is considered for insertion into a word slot unless it is
actually a word, and no word is considered unless it has
the desired orthographical properties (at least, as far as
that can be determined at any given stage in the solution).
The advantage of using Prolog lies in the fact that the
language allows the programmer to solve the problem at
a conceptual level rather than a procedural one.

The directness of the method also has important side
effects. Perhaps the most important of these is the ability
to generalise upon the principles involved to include
logically related puzzle relationships. Consider, for
example, the phenomena of slot linking. This is described
by Smith and Steen as the case where a single answer to
a question is distributed over several word slots. This is
easly handled by our approach, for the notion of a word
is logically independent from that of a word slot.

Refer to Fig. 1. Suppose that one answer is divided
between the word slots 1 down, 43 across and 61 down,
in that order. The clause structure required to recognise
this word or phrase is simply

solution([...,SLOT_1d,...,SLOT 43a,...,
SLOT_614d,...]):-
word(C1_1,C1_2,C1_3,C1_4,C9_6,C9_7,
C9_8,09.9,C13_12,C14_12,C15_12),
name(SLOT _14d,[C1_1,C1_2,C1_3,C1_4)),
name(SLOT _43a,[C9_6,C9_7,C9_8, C9_9)),
name(SLOT _61d,[C13_12,C14_12, C15_12)),

Or perhaps we might wish to add the extra condition that
the diagonal of a square puzzle must also be a word. This
can be handled by adding the following test

solution([..., DIAG, ...]):—
word(C1_1,C2_2,...,Cn_n),
name(DIAG,[C1_1,C2_2,...,Cn_n)),

THE COMPUTER JOURNAL, VOL. 30, NO. 2, 1987 187

0T0Z ‘2T laquialdas uo s[eaipolad Areiqi 1e 610 sfeusnolpiojxo’juliod woly papeojumoq

http://comjnl.oxfordjournals.org/

H. BERGHEL

Further we could extend our method to include linear
interlocking as well. In this situation, one word slot
overlaps another on the same row or column (indeed, one
may be contained within the other). This involves a
non-orthogonal type of cell sharing. In this case the
common cells, no matter where they appear, would
simply be placed in two separate argument lists. In Fig.
1, for example, we might insist that word slot 9 down be
filled by an eight-character work with ends in the
four-character word, 25 down. The appropriate Prolog
fragments necessary to add this requirement would be:

solution([..., SLOT 9d, ..., SLOT_25d,])
word(C1_10, C2_10, C3_10, C4_10, C5_10,
C6_10, C7_10, C8_10),
word(C5_10, C6_10, C7_10, C8_10),
name(SLOT 94, [C1_10, C2_10, C3_10,
C4_10,C5_10, C6_10, C7_10, C8_10)),
name(SLOT_25d,[C5_10, C6_10, C7_10, C8_10]),

The combinations and variations are endless: one can
easily imagine the generation of symmetrical puzzles,
puzzles whose word slots wrap around, puzzles in three
or more dimensions, puzzles with unusual geometries
(e.g. triangles, circles), and so forth. In addition, the
program can be used to complete puzzles which are
partially worked through. This involves nothing more
than substituting characters for some of the variable
positions. All of these variations are easily accomplished
because the program is a direct representation of the
underlying logic of crossword puzzles.

8. CONCLUSION

In our opinion the strategy of crossword compilation
described in this article has several distinct advantages.

REFERENCES

1. H. Berghel and E. Traudt, Spelling verification in Prolog.
SIGPLAN Notices, 21 (1), 19-27 (1986).

2. W. Clocksin and C. Mellish, Programming in Prolog.
Springer-Verlag, New York (1981).

3. R. Kowalski, Logic for Problem Solving. North-Holland,
New York (1979).

4. L. Mazlack, The use of applied probability in the computer
construction of crossword puzzles. Proceedings of IEEE
Conference on Decision and Control, pp. 497-506. IEEE
Press, Washington (1973).

5. L. Mazlack, Data structures required for crossword puzzle
construction. Proceedings of the 36th Annual Meeting of the

188 THE COMPUTER JOURNAL, VOL. 30, NO. 2, 1987

For one, the code is a literal transcription of the logical
analysis of the problem. This makes the code perspicuous
and easy to maintain and modify. The word slots are
clearly identified, and the conditions for word status are
plainly noted. Once one comes to appreciate the fact that
this method solves crossword puzzles by proving that the
listed goals are consequences of the lexical axioms, the
function of each goal is obvious.

Further, as we say above, myriad possible extensions
of the basic crossword puzzle are easily implemented.
This is a direct result of the ‘naturalness’ of the
methodology. The program is capable of virtually any
extension which is consistent with the underlying logic of
crossword puzzles.

Another advantage is simplicity. The ‘ business part’ of
the program is presented in a single procedure, with a
goal for each word and word slot. Since the program
relies upon the theorem-proving mechanism of Prolog,
little consideration need be given to such things as
search techniques, data structures and data formats. This
distinguishes this method from those of Smith and Steen
and of Mazlack.*? Our method is a direct and intuitive
approach to the problem, with a minimal amount of
distracting code.

Perhaps the most important advantage, though, is that
the techniques described here have implications for
approximate string matching and spelling verification.
Brief reflection will show that the logic of crossword
puzzle compilation carried over to these other areas as
well. For further discussion see Ref. 1.

American Society for Information Science, American
Society for Information Science, Washington, pp. 141-142
(1974).

6. L. Mazlack, Computer construction of crossword puzzles
using precedence relationships. Artificial Intelligence 7 (1),
1-19 (1976).

7. L. Mazlack, Machine selection of elements in crossword
puzzles —an application of computational linguistics.
SIAM Journal on Computing, § (1), 51-72 (1976).

8. P. Smith and S. Steen, A prototype crossword compiler.
The Computer Journal, 24 (2), 107-111 (1981).

0T0Z ‘2T lequiaidas uo spealpoliad Arelqi 1e Bio sjeuinolpiojxo’julwos wolj papeojumoq

http://comjnl.oxfordjournals.org/

