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We describe a procedure, which we refer to as crossword compiler-compilation, which will create source code for a
crossword compiler from the puzzle geometry alone. This procedure complements earlier results of ourselves and others

which automate only the latter stages of compilation.
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1. INTRODUCTION

‘Crossword compilation’ is the term used by Smith and
Steen™ to refer to the stages of generating crossword
puzzles. In an earlier paper,? we identified six activities
related to crossword compilation in so far as the
automation of the compilation is concerned:

(1) creation of the host matrix,

(2) determination of the overall design of the matrix,
(3) specification of word slots,

(4) identification of shared cells,

(5) construction of one or more solutions,

(6) composition of a clue set for each solution.

From the point of view of the crossword compiler (man
or machine), the first four activities are seen to be largely
technical issues dealing with the design and complexity
of the resulting puzzle. (5) is basically a methodological
issue, having to do with the mechanics of solving
crossword puzzles. (6) is the ‘human factors’ dimension
of puzzle compilation, which integrates a variety of
topics in psychology, linguistics and artificial intelligence.
In addition, there are a host of aesthetic issues which
involve all of the above.

The literature on automated crossword compilation
initially dealt with the construction of solution sets,
which we find to be the most interesting issue from a
computational point of view. At this writing, a dozen or
so papers have been published on this subject (see
references below), including an earlier work of ours.? The
art of mechanised clue set construction has also received
attention, primarily in the work of G.Smith and J.
duBoulay® (see also Ref. 11). The relationship between
the general issue of puzzle aesthetics (i.e. what constitutes
a ‘good’ puzzle) and the automation of crossword
compilation has been dealt with by P. Smith.!* However,
the technical issues have not, so far as we can determine,
received much attention. We propose to discuss one
approach toward the automation of (1) to (4) in this
paper. Specifically, we describe a procedure which
produces a program which generates the solution set for
a puzzle from the geometrical specification of that
puzzle. We refer to such procedures as crossword
compiler-compilers.

2. OVERVIEW

For the discussion which follows, we place certain
restrictions on the type of crossword puzzles to be
considered. First, we assume that all geometrical patterns

of the puzzle be defined within a host rectangular matrix.
Non-rectangular geometrical forms must be created
within the rectangle by creating pattern borders with
closed (black) cells. Secondly, we define a word slot to be 9
a linear arrangement of open (non-black) cells, bounded =
by either the puzzle border or closed cell. Thirdly, only §
orthogonal cell sharing or interlocking is allowed. §
Fourthly, orthogonal interlocking is assumed to apply to 3
all open cells for which it is appropriate. In addition, we 3
follow the custom of avoiding solutions which contain
more than one occurrence of a given word.

The first restriction has little practical significance, but
does affect the way in which we define the problem space.
The program which we describe below will work for any
arbitrary puzzle, regardless of external shape or internal
design, so long as the puzzle fits within a 25 x 25 matrix.
The second restriction prevents consideration of puzzles
where two word slots abut each other in the same
direction. The third restriction limits the range of word
slot linking to the most common, orthogonal type.
Finally, our program will assume that complete, or-
thogonal interlocking is desired if possible. These last
three restrictions are specifically included to produce the
types of puzzles normally found in America. They would
be relaxed to accommodate the British-type puzzles.
Such relaxation would involve trivial modifications of
the code.

Our general orientation toward solving crossword 3
puzzles has been discussed elsewhere.? As a result, we will 3
limit the present discussion to the basic issues.

In our opinion, the most intuitive description of the
problem is one which is based upon first-order logic.
That is, we see the solution of puzzles (ignoring clues, for
the moment) as essentially inferential: one infers the
solutions from the puzzle geometry, the ‘rules’ of the
game and a lexicon. Each of these parameters is
axiomatised. Then the axiom system may be run through
an inference engine (e.g. Prolog), the consequences of
which are solutions to the puzzle. Were we interested in
solving the puzzle based upon the clue set, we would add
additional sets of axioms relating to clues. We note that
in the absence of a fixed corpus of rules governing clue
generation, this would be a non-trivial activity!

We may best illustrate our approach by reference to
Fig. 1. The existence of a solution implies the truth of a
series of existential claims. Specifically, let the universe of
discourse be characters of the Roman alphabet. If a
solution to the puzzle exists, then it must be the case that
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Figure 1. Layout of typical American crossword puzzle.

where the quaternary and quinary predicates, W/4 and
W/5, mean ‘is a 4-letter word’ and ‘is a 5-letter word’,
respectively, and refer to the word-slots 1 across and 1
down. By generalising the individual variables to X; ;5 1
<1, j< 15, where i and j refer to the column and row
coordinates of the puzzle matrix, we may represent the
entire puzzle as an existentially quantified, prenexed
conjunction with apparent variables corresponding to
the open (non-black) cells are taken from the set
{X1,15---»X15,15) and where each conjunct is an n-ary
predicate, for some individual word-slot of length n.
Inasmuch as the formula is prenexed, and the common
cell variables are shared by interlocking word slots, word
insertions which create impossible interlocking situations
will be detected and avoided on backtracking.

This approach involves what Mazlack”® calls a ‘ whole
word’ search. However, unlike Mazlack’s unsuccessful
attempt,” our method does support a full range of
character-level heuristics. For example, by inserting goals
of the form (Ix,,...x,) (W(x,,....x,,_,...,_)), as inter-
mediate conjuncts (where ‘_’ is interpreted as a ‘don’t
care’ variable), one may avoid the inherent problem of
exhaustive search. In this way, the intermediate conjuncts
‘look ahead’ to interlocking word slots to ensure that the
word insertions do not create impossible combinations
of characters for word slots to be filled in later. Without
such a mechanism, the fail points would appear too far
down in the search tree. For crossword solution, the most
challenging aspect of the program design involves such
heuristics. Just as a viable crossword compiler must
include reasonable heuristics, so the crossword compiler-
compiler must be able to generate them.

In the sections to follow we describe one approach
toward the automation of those elements of crossword
compilation which deal with the technical issues and
which will culminate in the creation of a program which
will generate clue-independent solutions to arbitrary
crossword puzzles based entirely upon puzzle geometry.

3. CROSSWORD-COMPILER
COMPILATION

Given the restrictions mentioned in the previous section,
the specification of word slots and the identification of
interlocked cells is a consequence of the puzzle geometry.
Thus, of the original technical issues, only the size of the
host matrix and the internal design (distribution of
closed (black) cells) is required as input. As Fig. 2 shows,
our program interface has been created with this in mind.
Our objective is to create the source code for an efficient
and effective puzzle solution generator from this input,
alone. Were it not for the heuristics, compiler compilation
would amount to a simple sequence of lexical searches.

The necessary heuristics appear at two levels. At the

| OPTIONS ] !
<F1> : Save Puzzle

<F2> Recall Puzzle %

<F3> New Screen

<F4> Compile i_

<F5> Change Dimensions

<F6> Modify |
<F7> : ChangeN ]

<ESC> : Exit H
<INS> Insert closed cell

<DEL> : Delete closed cell

| STATUS I

PUZZLE DIMENSION: 25 by 25

CURSOR LOCATION:

TOW 14

column : 7

PUZZLE DENSITY 96.00%

N=4

Figure 2. Display.
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lower level we are concerned with intelligent backtracking
control. This control may be exercised by means of
judicious applications of extra-logical control predicates
(e.g. cut and snip). At the higher level, that of program
organisation, we must concern ourselves with strategic
issues which involve the very orientation which we take
toward the problem. Any crossword compiler-compiler
worthy of the name must create source code with both
levels of control built in.

While backtracking control is a sine qua non in efficient
program design, there is not much that may be said of it
which has enduring importance. Unfortunately, such
mechanisms (at least in the Prolog family) have a ‘fuzzy’
semantics, due primarily to the lack of a single language
standard at the moment, which creates inconsistencies
between implementations. Further, while such control
constructs have no effect on the declarative semantics of
program, they do alter the procedural semantics. The
reader should be forewarned that there are troublesome,
although possibly ephemeral, issues involved in back-
tracking control with which we shall not deal. Instead,
we refer the reader to a standard text on the subject'? and
an earlier report of ours.?

The example of heuristics which we gave in the
previous section illustrates an overall strategy. As we
mentioned, the goal is to raise the fail points as high in
the search tree as possible. However, the particular
example which we gave has two shortcomings: it does
not take into account non-rectangular geometries, and it
fails to address the fact that the distribution of word
lengths in an actual dictionary is not uniform (see Fig. 3).
Thus further enhancement is called for.

35000 8
&)

30 000
25 000
% 20 000
2 15000
10 000
5000
0_1

r of words

Num

1 3 5 7 9 11 13 15 17
Word length

19 21 23

Figure 3. Distribution of lexicon by word length.

4. STRATEGY

As any crossword puzzle enthusiast will avow, the
intuitive idea behind solving a subcomponent of the
puzzle is to rule out impossible combinations of
interlocking words as soon as possible. To illustrate,
consider the full (i.e. 100% dense with respect to open
ceils) puzzle in Fig. 4. Were we to insert words 1A
(across), 2A, 3A, 1D (down), 2D and 3D, in that order,
we would have no fail point before the fourth insertion.
On the other hand, the sequence 1A, 1D, 2A, 2D, 3A,
3D would have two fail points prior to the fourth
insertion. The latter strategy is clearly more effectual.
In general, if f{i) is the number of fail points (i.e.
interlocking cells) generated at stage i of the insertion
sequence, and c(i) = X_, f(j), is the cumulative number
of fail points at stage i, then we will aways prefer, other

1 2 3

C1_1 |c12 |c13
2

c2.1 |c22 |c23
3

c3_1 |c32 |c33

Figure 4. Full puzzle.

things being equal, those insertion strategies which
maximise c(i), for all stages, i. In the case of the puzzle in
Fig. 4, the sequence of values of c(i) for the first strategy
is €0, 0, 0, 3, 6, 9>, while for the second strategy the
values are <0, 1, 2, 4, 6, 9). Clearly, the advantage lies
with the approach which alternates between across and
down words.

However, the algorithm to maximise c(i) is straight-
foward only if the open cells fall within a rectangle.
Generalising to non-rectangular sub-puzzle geometries
would not gain much, because of another mitigating
circumstance: some word slots are easier to fill than
others because of their length. Thus, what is called for is
an algorithm which uses the alternating approach to
word slot insertion (i.e. tries to maximize c(i)) and, at the
same time, takes advantage of the effect of a non-
uniform distribution of word lengths. We call our
algorithm the ‘highest priority neighbourhood’ ap-
proach.

The algorithm works in the following way. First, we
assign to all word lengths a priority according to the
frequency distribution of the lexicon. Currently, we use
unweighted prioritisation, which is inversely related to
the frequency of occurrence. That is, if r(x) is the rank
order of word length, x, and N is the number of word
lengths represented, then p(x) = N —r(x). Of course, the
intuitive idea is that we prefer to work first with the word
slots which will be hardest to fill. A prioritisation table
allows us to choose the ‘rarest’ of those which intersect
the current word slot ‘on the fly’. So, with regard to
Fig. 3, p(24) = 24 while p(9) = 1, etc.

Next, we identify the entry point into the puzzle by
selecting the word slot with the highest priority (the
default for ties is the slot with the lowest row/column
coordinate in the first position). Then we invoke an N-
level look-ahead procedure, where N > 1 is selected by
the user, to determine the next sequence of slots to fill,
alternating horizontally and vertically as we go.

We have approached the look-ahead procedure from
two different points of view: exhaustive and focused. In
the exhaustive case, we determine the priorities of all
word slots which intersect our target, then the priorities
of all word slots which intersect the intersecting word
slots, and so forth, for the next N levels. The preferred
path is defined as the one with the highest aggregate
priority (e.g. simple summation). Since the procedure is
exhaustive, the time complexity should be somewhere
between factorial and exponential. For the puzzle in
Fig. 1, 40, 51, 99, 286 and 991 seconds were required for
compilation when N was set to 1, 2, 3, 4 and 5,
respectively. Higher values of N caused heap/stack
collision. Of course, the user interface is essential here,
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for it allows the user to control the progressive deepening
of the search by varying the value of N. The advantage
of the exhaustive approach is that the search sequence
for m words slots is optimal with respect to the frequency
distribution of word slots when N = m.

In practice, however, we opt for a more focused
approach. In this case, we commit to one word slot at
each level, based upon priority, and only then move
on to the next level. This modification yields linear
performance. Since the exhaustive approach is generally
not optimal for N <m, and since the performance
degenerates radically as N approaches m, we feel that, on
balance, we haven’t lost much with the focused approach.
We have found that for N = 5, run times of the ‘ compiler-
compiler’ are insignificant (e.g. 2 minutes on an 80286-
class microcomputer for the puzzle in Fig. 1), and the
resulting heuristics on a par with those done by hand (i.e.
the run times of the solution generator produced by our
program are not consistently superior or inferior to those
which we produced manually).

5. OPERATION

Crossword-compiler compilation begins with the geo-
metrical information recovered from the display memory
(see Fig. 2). This figure shows the screen image after 4%
of the cells have been filled. Cursor positioning (the cell
shaded with diagonal lines) is by ‘arrow’ keys or mouse.
Cells are closed or opened with the {INS) and (DEL)
keys whenever the program is in the ‘modify’ ((F6))
mode. (F4) is the ‘hot’ key, causing the crossword-
compiler compiler to be invoked on the basis of the
current geometry. The remaining functions are self-
explanatory.

The first step in compilation involves the creation of
two lists, one each for all of the across and down words.
Each entry consists of a word-slot identifier and the
priority value discussed in the previous section. The
creation of the sequence of word fillings continues until
both of these lists are empty.

For any given step, the determination of the ap-
propriate ‘next word’ causes two disc files to be updated
with procedures for search as well as for backtracking
control. To illustrate, consider the puzzle in Fig. 5. Were

Ci_4

C3_4 | C3.5
C4_4 | C4.5
C5.4 | C5_5

Figure 5. 72% dense puzzle on 5 x 5 matrix.

the next word to be filled (C2_2,C2_3), the following
clause fragments would be inserted in these files:

File A

recorded(foundword,word(C2_2,C2_3), ),
not(member([C2_2,C2_3],LISTIN),
heuristic(C2_2,C2_3),
append(LISTIN,[C2_2,C2_3],LISTOUT)

File B

heuristic(C2_2,C2_3):-
recorded(foundword,word(_,C2_2, ), ),!,
recorded(foundword,word(_,C2_3,_, , ), ),

Of course, file A is in fact a single Prolog procedure,
where all variables contained within are bound by the
same quantifier. File B, however, consists of a set of
clauses, one for each word slot, which represents the
heuristics. Once invoked and satisfied, their variable
bindings are irrelevant. The varying arities for the
‘word’ predicate name correspond to the varying-length
word slots which intersect our target (down words,
(C1_.2,C2_2,C3_2)»and {C1_3,C2_3,C3_3,C4_3,C5_3),
in our example). Including this strategy prevents us from
moving ahead with the solution if an impossible situation
has been created. The ‘not-member’ predicate is used to
ensure that no puzzle has more than one occurrence of a
single word. Both of these sets of procedures are
consistent with the restrictions discussed in Section 2,
above.

Our program makes a few modifications to the
resulting code which are pragmatically motivated. First,
in the current version of the program we represent all of
the database clauses in list form, where the heuristic
predicates are elements of sublists. That is, the program
appears as [...,word, [heuristic,_,, ..., heuristic,_,], ...]
rather than as two sets of procedures, integrated through
calls. Ignoring boundary conditions, the main procedures
than take on the following form:

list(X]Y],L1):— legitimate_word(X),
not (member (X, Y)),
heuristic (Y, X, L1).
heuristic ([X]Y], Z, L1): —check (X)
append ([Z], L1, L2),
list (Y, L2).
check ([X: Y]):—legitimate_word(X),
!

;:’heck( Y).

In this way, we process the entire list with few recursive
procedures and avoid the overhead associated with the
unification of variables between separate procedures (i.e.
those with search vs. heuristic predicates). Further, we
generate a complete set of compiler directives. Such
modifications are motivated by concern for performance
and implementation limitations (e.g. maximum number
of predicates per procedure which are supported), and
have no effect on the declarative reading of the program.
The output is the complete source code for a Prolog
program, which generates one or all of the solution sets
with respect to the given geometry of the puzzle. The
code may then be compiled and linked with the desired
lexicon.
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6. CONCLUSION

As we mentioned earlier, previous work on crossword
compilers has largely ignored the technical issues
associated with the actual construction of the compiler.
In this context, automation is primarily associated with
the construction of the solution sets or the generation of
clues. In this paper we extend the automation to the
compiler itself. In general, this process, which we call
crossword compiler-compilation, involves the automatic
creation of crossword compilers from geometrical specifi-
cations of the puzzle. This work can be seen as a natural
extension of earlier work. Building upon our under-
standing of human crossword compilation, earlier work
dealt with the automation of the process. Our present
goal is to automate the very process of automation,
based upon our understanding of the underlying prin-
ciples. In particular, our approach views the automation
of crossword compilation as a two-stage endeavour,
involving both a logical description of the problem and
an understanding of the heuristics which affect per-
formance.

The crossword compiler-compiler which we described
above is implemented in Pascal for the IBM family of
microcomputers. The resulting compiler is in Prolog. The
source code is created with Arity Prolog in mind,
although with the exception of the compiler directives
and a few minor syntax changes, the program should
compile with almost any Prolog which supports Edin-
burgh syntax. As we argued before,? we find the logical
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