
AN APPROACH TO TABLEAU INFERENCING
WITH ‘HARDWIRED’ HEURISTICS

Hal Berghel $t
Richard Rankin St
Farukh Burney $

$ University of Arkansas
t National Center for Toxicological Research

ABSTRACI

In this paper we discuss a protot
?r

of the tableau method which derives
its rule base from Jeffrey’s text I 1. The heuristics are a subset of those
outlined for HARP by Oppacher &d Suen [4]. The prototype was written
in C and intended for use with the IBM family of microcomputers. We
shall outline some of our implementation strategies and, insofar as is
possible, contrast than with those of the earlier pioneering work of
Oppacher and Suen.

INTRODUCTION

One of the major practical breakthroughs of this century in formal logic
was the development of the semantic tableau [1][2][7]. This complete and
consistent decision procedure has since evolved into the trnth tree method
[3][8] which presetves the important completeness and consistency
properties while making the resulting proof tree more readable. As a result
of the convenience of the procedure and the desirable metalogical
properties, the truth tree variant of the semantic tableau has bccane a &
facto standard for first order problem solving [3].

From a computational point of view, the method is attractive because it is
suppottable by fairly clearcut unification and resolution procedures. Since
an automated tableau, by defmition. supports full first-order logic with
identity, them is a great deal of current mtemst in developing prototypes
(see refs. [4] [5] [6] [7] for further details).

THE FORMAL METHOD

As with convcnticnal inference engines (e.g., Prolog), semantic tableaus
rely on a reductio ad absurdum or indirect proof strategy. ‘Ibat is, in the
case of valid& checks. an attemut is made to reconcile the neeation of the
conclusion with the premises. ti the negation of the conclu.&n is jointly
satisfiable with the premises, then the conclusion is not satisfiable, hence
the argument is invalid. Unlike conventional inference engines, the
tableau method works with full first order expressions rather than
restricted subsets (e.g., Horn clauses) and utilizes a set of procedural rules
which are complete w.r.t. the Principia Mathematics camectives. ‘lltir
makes the automation of the semantic tableau particularly appealing to the
AI community.

The semantic tableau rule base consists of three types of rules: branching
mles, non-branching rules and quantifier rules (see Figure 1). We will
initially take up the first two categories.

The validity of the parsing rules derives from the truth functional
properties of the corresponding formulas. To illustrate, we note. that there
arc two ways in which the formula ’ avfi’ may be true: either ’ a’ is true or
‘p’ is true (or both, of course). In the tableau, this fact is captured in a
branching rule with ‘a@ as the parent and ‘a’ and ‘8’ as separate
descendants. Similarly, de Morgan’s law for conditionals tells us that a

negated conditional is true just in case the antecedent is true and the
consequent is false. This fact is reflected in a non-branching rule, In
general, the parsing rules ensure that every truth functional alternative
appears in the proof tree. One may think of each of these parsing rules as
a property whtcb holds for any arbitrary interpretation over the variables
(e.g., I(a-$)=F c) (I(a)=T and I(B)=F), for any interpretation. I). The

c
aning rules which pettain to truth functional structure appear in both
ranching and non-branching versions in Figure 1.

I) Non-Branching Rules

a*+ b)A c)-(A V B) d)-(A + B)
A -A A
B -B -B

2) Branching Rules

M&E! W-A&B MI!LAB d)iyAB e)-(A c) B)
-AI-B

Bl&
A I-A
-BIB

3) Quantification Rules (restrictions apply - see text)

a)VxA(x) b);:tiAti c)3xA(x) d)3xA(x)
NO - 40 Vx-A(x)

FIGURE 1: TABLEAU PARSING RULES

In addition to the parsing rules, there are two rules which deal with

1.
uantification. The rule for existential quantification is depicted as 3.~. in
tgure 1. This rule states that for any formula of the form 3xa, if the path

containiig 3xa does not contain any formula of the form a[x/t], then we
may substitute for 3xa a new formula a[x/t] for some term, t. In effect,
this guarantees that ground instances of existential quantifiers will only
result from instantiations of terms new to the path.

Conversely, the rule for universal uantification
I

ensures that grounding
will only result fmm instantiations o terms already on the path. Formally,
f-&e% zc’$ t;yw;vy ~~;g~;;goQ’$m’; it;;: t;

quantification is never tcrm’mal with respect to a formula. J this case, but
in no other, our algorithm retains the original formula Vxa on the path
along with each and every ground instance.

The flowchart for the semantic tableau appears as Figure 2 followed by a
typical tableau in Figure 3.

HEURISTICS

As we mentioned earlier, one of the advantages of the tableau method is
that with the exception of a few anomalies involving quantifier nesting, the
rules may be applied in any order without sacrificing the correctness of the
procedure. In our system, we apply the rules by means of a subset of the

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy other-
wise, or to republish, requires a fee and/or specific permission.

0 1990 ACM 089791-347-7/90/0003/0090 $1.50 90

STAGE l.List the premises and the negation of the conclusion.

STAGE 2. Apply the rules for the negation of all relevant formula. Close
(Xisz?h path that contains both a formula and its negation. Am all paths

NO: GO TO STAGE 3
YES: STOP. THE INFERENCE IS VALID

STAGE 3. Is them a formula (unchecked in an open path) to which one of
the parsing rules applies?

NO: GO TO STAGE 4
YES: APPLY lT and GO TO STAGE 2

STAGE 4. Is there a formula (unchecked in an open path) to which the
rule for existential

No: GO ~0 STAGE 5
uantifiers can be applied.

YES: APPLY II and GO TO STAGE 4

STAGE 5. Is them a formula (in an open path) for which the rule for
universal quantifiers can be applied?

NO: GO TO STAGE 6
YES: APPLY IT and GO TO STAGE 5

STAGE 6. Have any changes been made in the tree since last entering
stage 2, above?

NO: GOT0 STAGE 7
YESGOTOSTAGE2

STAGE 7. STOP. ‘Ihe inference is invalid.

FIGURE 2: TABLEAU FLOWCHART

Vx(Px A Qx) + (VXPX A VXQX)

1 v

:J

-fz&: A$) -r (VxPx A VxQx)) [negation of fomntla]

-0fxPx A VXOXJ
; ;gxPg I 5 d-VXQX

8 -
I 7 clx-Qx

-Pa 19 -0b
:: tiEAQa i :itigAQb

13 Qa I 15 Qb
X (closed) I x (closed)

FIGURE 3: SEMANTIC TABLEAU

heuristics used in HARP. It should be. remembered that the objectives for
this prototype were portabiity within the IBM/PC family of
microcomputers and efftciency. As a result, heuristics were ‘hardwired’
into the code. This yields the small coda sixe and increased speed, but
comes at the exoense of neneralitv and robustness. Further. aU of our
heuristics am de&able as ?jpe A h OPPacher and Suen, e.g. defmable as
“...heuristics for efficient and human-ltke proof construction...“. As a
group, they are ‘textbook-level’ heuristics which vittmthy every student of
elementan, loeic atmlies in tableau-based masoninn.
For ccsnp~ete&ss.*we include in Table 1 the entireiet of 14 heuristics used
in HARP by Oppacher and Sum. lhose which we have implemented are
marked with ari itsterisk.

HARP has implemented a memory saving schema which allows new
nodes to be added without fotmula duplication. New nodes are
mpmsented by pointers to the proper sub-fonmtla of the ancestor formula.
This allows for stmdure sharing among many nodes. This feature was not
implemented in the system.

GENERAL CONTROL SI-RUCTURE
TABLE 1: Heuristics HO to H13

HO: Work on a branch until it closes or is known to remain open
Hl*: Work on a formula until it is ground
H2*: Avoid unnecessary branching
H3*: Prefer existential instantiation
H4: Favor formulas with nested existential quantiflen
H5: Favor formulas derived from the negation of the conclusion
H6: Avoid clearly useless work
H7: Prioritize branching
HS*: Favor fresh universal quantifiers
H9*: Minimize the proliferation of instantiated terms
HlO: Use of theorem Introduction (complementary)
Hll: A ly domain specific rules wherever possible
Hl2*: #snify complete open branches ASAP
H13*: Recognize non-converging V3 patterns

The prototype is implemented by using a control 1
7-i

which utilizes the
ordering of the Procedures in the loop to apply the euristics in proper
order. ‘lhe control locp based upon earlier work of Reeves [5] is as
follows:

begin

YG~es:=false
close each path containing a sentence and its negation
if all paths closed, deliver:entailment is valid
else

(1) if a splitting rule can be applied then
changes:=tme
(2) apply appropriate splitting rule
mark the sentence as used

&e(3)
Before we turn to a discussion of the actual implementations we need to apply the existential (iistantiation) rule
make a fairly substantial caveat. Since this is a prototype, we took
considerable liberties in exI%%&ation. even if the experimentation were

(4) apply the universal (instantiation) rule
until not changes

unjustified from a practical or theoretical point of view. For example, our
current search strategy is breadth-first, rather than depth-fist (as called for
in HO). Since we may determine the invalidity of an argument with only
one open path, them is no reason to pursue a second path if we can show
that the fint one will never close. Hence, HO is the only viable search
strategy. However, a breadth fust strategy is far mom useful when one is
tracing through the program execution because it provides a wider window
into the operation of the program. Thus, it was selected. We had similar
reasons for omitting other heuristics. In general, if we felt that the time
spent was disproportionately large compared with the understanding which
the inclusion would have afforded, we left it out. It is important to
recognize that our approach is purely exprimental within a narrow
environment, and not unended as a commerctal-grade product.

DEVELOPMENT SYmEM

Our rototype was totally developed in a microcomputer environment.
The JL velopment and target machine was an IBM PC class platform with
640k and PC-DOS 3.0 or above. ‘Ihe compiler used was Microsoft Quick
C, version 1.0. The resulting program uses ‘standard C’, and is, therefore.
portable, except for the windowing functions used to develop the opening
screens. The uortabilitv and utilitv of the system is further enhanced bv
the fact that the exec&ble mod& is cnlv f9k in size. Each node in the
tableau requires approximately 3d bytes:primarily for @mcrs to other
structures. These additional structures require a substanttal portion of the
memory usage by the system. We estimate that a tableau with two to three
thousand nodes can be easily accomodated in a machine with 640k
memory.

LIMITATIONS

Some limitations apply to the implementation of the system, primarily
regarding the input schema, and the number of heuristics included.

During in
example o p”*

t. all cauteaivu must be completely ~renthesized. An
thus would be: ((Fa+Ba)+Ca):Da. The tnput routine checks

for the proper matching of parentheses. It appears that HARP [4] adds
parentheses as needed, by itself. Also. connectives and quantifier symbols
in the proto
the lower s

have been chosen from the set of printible characters in
of the ASCII set. This increases wttabilitv. but decreases

the aesthetic appearance of formulas.
1 _

HARP maintains nodes awaiting processing in a Priority queue. A meta-
level supervisor applies the heuristics su

$”
ned by the system, and selects

a new candidate formula for processing ased upon the resultant priorities.
The prototype applies the heuristics implemented as part of a control loop
which uses the sequential ordering of the procedures to apply procedures
in the prouer order. The ordering of the control structure itself forces
heuris&s -to be am&d in thi Dr0De.r order. favorina existential
instantiation, for ex&ple. over u&e& instantiation. tie protoype
system maintains a list of leaf nodes so that full tree tmversals are not
required to apply splitting rules to leaf nodes or to determine if the entire
tree is closed.

91

deliver: entailment is invalid
end

Lines marked above in braces, e.g. (1). ate referenced below.

Our control structure is slightly varied to allow for the inclusion of the
heuristics described above. H2, can be incorporated by distinguishing, at
section { 1) between sentences available for branching mles and non-
branching rules. By favoring non-branching rules over branching rules for
application at section (2). one incorporates H2. since non-branching rules
restrict the growth of the seach tree.

In section (3). the pseudo-code for our prototype is implemented so that
the application of a universal instantiation would occur only if there were
no exrstential instantiation candidate available. This effectively applies
H3.

HS is implemented by maintaining a flag which indicates when a universal
quantifier rule is used- Section (4) prefers universal quantifier rules
which have not been used. For full implementation of HS, this flag would
be changed to an occurrence counter, and the universal rule with the
lowest counter value would be selected.

Heuristic H9 is concerned with minimizing the number of new parameters
introduced. This heuristic was incorporated through the use of a system
incorporating Reeves’ dummy variables schema, [5], and is discussed in
more detail below.

The resulting control structure for the system, therefore, is as follows:

tree-change := false
if (tree-closed) then valid := true
else

sear&for_alpha-rule
if (no al ha-rule)

seam -for-beta-rule 1
if (splitting rule found)

apply splitting rule found
tree-change :=tme

else
search-for-existential candidate
if (no existential~cand~ate~found)

search for_universal~rule
if (existe&l~candidate~fcund)

apply existmtial~rule
tree-change := true

else if (universal-candidate-found)
apply universal mle
tree&xnge :=tme

) while (tree-change = true)
if (valid = true) return: entailment valid
else return: entailment invalid

H12 is implemented using the d-y variables and scope trees. When a
dummy variable is added to a leaf node, and the constraint list is empty,
the conditions hold for invoking Hl2. and the branch may be declared
complete.

HI3 is invoked when applying instantiations from formulas containing a
V3 pattern. This operation involves checking branches for non-
converging V3 patterns. A standard form of a non-converging V3 pattern
is:

‘dxEyFxy,EyFay,Fab,3yFbyFbc.EyFcy,Fcd

The universal and existential quantifiers repeatedly introduce new
instantiations which do not converge towards a solution. Implementing
H13 involves a search of the current path when instantiaticms arising from
a V3 formula arise. When a non-converging pattern is found, the branch is
declared complete.

DUMMY VARIABLES

As mentioned above, the use of dummy variables in universal
instantiations can help canto1 the proliferation of unnecessary nodes.
Implemmtatiar Problems with d-y variables generally fall into two
categories: quantrtier scope and constraint lists.

The fiit determination to be made when using dummy variables is the
scope of the quantifiers involved in the sentence prior to instantiation. For
example, consider the sentence:

vx (vysl(...) + Vdv(...))

From the discussion above, it can be seen that existentially instantiating
either u or v should constrain x. since both are within the scope of Vx. 3u
is within the scope of Vx and Vy, but not within the scope of Vz 3v is
within the scope of Vx and Vz, but not within the scope of Vy. If an
existential instantiation is made with variable u, the resulting constraint
should only be placed upon the dummy variables for x and y. and not z.
To manage this problem, our prototype utilizes scope trees to determine
the Proper dependencies.

A scope tree is constructed for a sentence with quantifiers. The tree
maintains only the quantifier portions of the sentence so that a relation of
dependencies can be uickly analyzed. As leaf nodes are added to the
tableau, each receives % e appropriate copy of a scope tree.

As one instantiates portions of the tableau, it is necessary to determine
which values have appeared. Using only scope trees, any instantiation
would require a search of the s
node. For reasons of efficiency z ~~&Y~~~~p~~~~~~;

path-frames. A path-frame is a dou ly linked list which stores all values
which have hem inserted in every path of the tableau. Each leaf node
maintains a

*R”
inter to its path-fmme and can check the a&-frame for

values whtc P have been used along the path to the eaf node. A
path-frame is maintained for every leaf node. When a new node is added,
the

I?
tit-frame is moved to the new node. When a splitting rule has been

app ed. for example, creating two new leaf nodes, each of the new nodes
receives a copy of the path-frame of the parent. This allows quick

EXAMPLE 1

Formula: F[l][2], (G[l][3]&R[l][2]),(F~l][2]>(-G[l][3]+-G[l][3]+-
N11[21)
Entailment is valid

NODE LEFI
0 1

‘RIGH’I

s
8

‘CLOSEDCONTENTS
n FV1[21
n (G~11[3l~N11[21)
n h-11 1[21~(-G~11~31+-R~11~21))
n G[11(31

;
Wd
-FUlM

;:
(-G~~lI3l+-N11~21)
-w1[31

Y -Wl[21

EXAMPLE 2

Formula: -3x(Fx+-Fx)
Entaihnent is valid

NODE LEFT RIGHT CLOSEDCONTENTS
0 1 - n Vx-(Fx+-Fx)
1

; :
n

; - - ;

4#1+-FQW

FWll

[#l] = 1 Constraint on [#l] : None

EXAMPLE 3

Fommla: EzBzz, Vx(Sx>Bxx):-S[7I
Entaihnent is invalid

NODE 4”” RIGHT CLOSED s;BCIENTS
0 n
i 1 - n
2 3 - n

v.$-W
S

3 4 - n Blllll __ II
5 6

; - - ;
(~[~ll~B~~ll[~ll)
-S[#l]

6 - - n BWllWll

[#I] = 7 Constraint on [Ml : None

FIGURE 4: SAMPLE OUTPUT

92

determination of potential instantiations for a given node.

SAMPLE OUTPUT

Ou~ut from the prototype is presented as a lit of nodes and contents
simtlar to that used in a cursor-based array implementation of a binary
tree. This method of presentation was chosen to eliminate the problem of
graphically displaying a binary tree of arbitrary depth. As can be seen
from the exam les
decision as to w rl

in Figure 4, the original formula is presented. a
ether or not the entailment is valid, then a presentation of

the tableau. Constraints on dummy variables are also listed, where
applicable.

Dummy variables are listed as [Xx] where x is an integer value. Constants
are represented as positive integers. V is used for universal quantitlcaticst,
E is used for existential quantification, other capital letters are available
for predicates. Variables are represented by lower case letters.
Connectives are: ‘&’ for AND, ‘+’ for OR, ‘-’ for NEGATION, ‘>’ for
IMPLICATION, and ‘=’ for CO-IMPLICATION. ‘lhe premises are
terminated by commas, and the conclusion by a colon. Constraiuts are
listed by dummy variable name. For example, the line:

[#II = 0 Coflstraint on [#I] : 1

is equivalent to Reeves’ “X 1 < 1” where 1 is considered a ccnstant.

CONCLUSION

As we mentioned in the introduaion, we approached this pmtotyping fran
a special interest point of view. Unlike the broader work of 0 acber and
Suen, our work is best described as an investigation into the

pp. . .
eastbtbty of

developing a tableau-based inference engine for MS-DOS
microcomputers. We found that such a system was both realistic and
practicable within this environment.

Subsequent work on memory management and control strategies has
already begun. A depth-fist search strategy would speed the
determination of the validity of the entailment, and will be included in the
future. Parallel with this work will be an investigation into the type and
variety of extra- and meta-logical mechanisms which may be requued of
the programming language which will ultimately evolve from this work.

REFERENCES

[I] Beth, E.W., Aspects of Modem Lot+. D. Reidel Publishing Co.,
Dordrecht, 1970.

[2] Beth. E.W., Formal Methods: An Introduction to Symbolic Logic zd
to the Study ofBffecnve Operations in Arithmetic and Log ,
D. Reidel Publishing Co., Dordrecht.1962.

[3] Jeffrey, R.C.. Formal Logic: It’s Scope and Limits, McGraw-Hill Book
Co., New York, 1967.

[4] Oppacher. F. and E. Sum. “HAPS: A Tableau-Based Theroem
YF’, Joumal of Automated Reasoning, Vo14.1988 pp69-

[S] Reeves, S.. “Semantic Tableaux as a Framework for Automated
Theorem-Proving”, manuscript.

[6] Reeves. S.. “An Introduction to Semantic Tableaux”, CSMJ,
De artment of Computer Science, University of Essex, March
19b.

[7] Reeves, S.. “Adding Equality to Semantic Tableau”, Journal of
Automated Reasoning, Vol. 3,1987, pp. 225-246.

[B] Smullyau, R.M., First Order Logic, Springer-Verlag, NY, 1968.

93

